1) Simplify sine theta over square root of the quantity 1 minus sine squared theta.
tan Θ
tan2 Θ
1
−1
2) Is square root 1 minus sine squared theta = cos Θ true? If so, in which quadrants does angle Θ terminate?
False
True; quadrants I & IV
True; quadrants II & III
True; quadrants I & III
3) If sin Θ = 5 over 6, what are the values of cos Θ and tan Θ?
cos Θ = ±11 over 36; tan Θ = ±1 over 11
cos Θ = ±square root 11 over 6; tan Θ = negative 1 over 11
cos Θ = ±11 over 6; tan Θ = negative 5 over 11
cos Θ = ±square root 11 over 6; tan Θ = ±5 square root 11 over 11
4) Simplify (1 − sin x)(1 + sin x).
1
cos2 x
sin2 x
tan2 x
5) If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ?
sin Θ = square root 2 over 2; tan Θ = −1
sin Θ = negative square root 2 over 2; tan Θ = 1
sin Θ = square root 2 over 2; tan Θ = negative square root 2
sin Θ = negative square root 2 over 2; tan Θ = −1
2 Answers
-
1) Simplify sine theta over square root of the quantity 1 minus sine squared theta.
sin(x) / sqrt( 1- sin^2(x) ) = sin(x) / sqrt( cos^2(x) ) = sin(x) / cos(x) = tan Θ
2) Is square root 1 minus sine squared theta = cos Θ true? If so, in which quadrants does angle Θ terminate?
It is true. The square root leads to a positive number. So the answer is in the quadrants where sine is positive. So (B)
False
True; quadrants I & IV
True; quadrants II & III
True; quadrants I & III
3) If sin Θ = 5 over 6, what are the values of cos Θ and tan Θ?
cos(x) = +/- sqrt( 1 – sin^2(x) ) = +/- sqrt( 1 – 25/36 ) =+/- sqrt( 11/36 ) = ± sqt(11) / 6
tan(x) = sin(x) / cos(x) = +/- 5 / sqrt(11)
cos Θ = ±11 over 36; tan Θ = ±1 over 11
cos Θ = ±square root 11 over 6; tan Θ = negative 1 over 11
cos Θ = ±11 over 6; tan Θ = negative 5 over 11
cos Θ = ±square root 11 over 6; tan Θ = ±5 square root 11 over 11
4) Simplify (1 − sin x)(1 + sin x). This is (a + b) (a – b) = a^2 – b^2
So this is 1 – cos^2(x) = sin^2(x)
1
cos2 x
sin2 x
tan2 x
5) If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ?
If 3 pi over 2 < Θ < 2π Then the signs of sinx and tanx are both negative.
cos(x) = sqrt(2)/2. So sin(x) = -sqrt(2)/2 and tan(x) = -1.
sin Θ = square root 2 over 2; tan Θ = −1
sin Θ = negative square root 2 over 2; tan Θ = 1
sin Θ = square root 2 over 2; tan Θ = negative square root 2
sin Θ = negative square root 2 over 2; tan Θ = −1
-
I got them all right