Algebra 2 Help: Pythagoras, Trigonometry, and Quadrants?

NetherCraft 0

1) Simplify sine theta over square root of the quantity 1 minus sine squared theta.

tan Θ

tan2 Θ

1

−1

2) Is square root 1 minus sine squared theta = cos Θ true? If so, in which quadrants does angle Θ terminate?

False

True; quadrants I & IV

True; quadrants II & III

True; quadrants I & III

3) If sin Θ = 5 over 6, what are the values of cos Θ and tan Θ?

cos Θ = ±11 over 36; tan Θ = ±1 over 11

cos Θ = ±square root 11 over 6; tan Θ = negative 1 over 11

cos Θ = ±11 over 6; tan Θ = negative 5 over 11

cos Θ = ±square root 11 over 6; tan Θ = ±5 square root 11 over 11

4) Simplify (1 − sin x)(1 + sin x).

1

cos2 x

sin2 x

Also Check This  Quanti grammi di ossigeno ci sono in 10 mol di acqua?

tan2 x

5) If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ?

sin Θ = square root 2 over 2; tan Θ = −1

sin Θ = negative square root 2 over 2; tan Θ = 1

sin Θ = square root 2 over 2; tan Θ = negative square root 2

sin Θ = negative square root 2 over 2; tan Θ = −1

2 Answers

  • 1) Simplify sine theta over square root of the quantity 1 minus sine squared theta.

    sin(x) / sqrt( 1- sin^2(x) ) = sin(x) / sqrt( cos^2(x) ) = sin(x) / cos(x) = tan Θ

    2) Is square root 1 minus sine squared theta = cos Θ true? If so, in which quadrants does angle Θ terminate?

    It is true. The square root leads to a positive number. So the answer is in the quadrants where sine is positive. So (B)

    False

    True; quadrants I & IV

    True; quadrants II & III

    True; quadrants I & III

    3) If sin Θ = 5 over 6, what are the values of cos Θ and tan Θ?

    cos(x) = +/- sqrt( 1 – sin^2(x) ) = +/- sqrt( 1 – 25/36 ) =+/- sqrt( 11/36 ) = ± sqt(11) / 6

    tan(x) = sin(x) / cos(x) = +/- 5 / sqrt(11)

    cos Θ = ±11 over 36; tan Θ = ±1 over 11

    cos Θ = ±square root 11 over 6; tan Θ = negative 1 over 11

    cos Θ = ±11 over 6; tan Θ = negative 5 over 11

    cos Θ = ±square root 11 over 6; tan Θ = ±5 square root 11 over 11

    4) Simplify (1 − sin x)(1 + sin x). This is (a + b) (a – b) = a^2 – b^2

    So this is 1 – cos^2(x) = sin^2(x)

    1

    cos2 x

    sin2 x

    tan2 x

    5) If cos Θ = square root 2 over 2 and 3 pi over 2 < Θ < 2π, what are the values of sin Θ and tan Θ?

    If 3 pi over 2 < Θ < 2π Then the signs of sinx and tanx are both negative.

    cos(x) = sqrt(2)/2. So sin(x) = -sqrt(2)/2 and tan(x) = -1.

    sin Θ = square root 2 over 2; tan Θ = −1

    sin Θ = negative square root 2 over 2; tan Θ = 1

    sin Θ = square root 2 over 2; tan Θ = negative square root 2

    sin Θ = negative square root 2 over 2; tan Θ = −1

  • I got them all right


Leave a Reply

Your email address will not be published. Required fields are marked *