step by step
3 Answers

It’s hard to write out “synthetic division” on Yahoo Answers. Here’s another way to divide a polynomial p(x) by (x3). Add and subtract the multiple of (x3) that has the same highestpower term as p(x), then simplify to get a smallerdegree polynomial r(x) plus multiple of (x3).
The multiple of (x3) that has x^4 as its leading term is x^3(x3) = x^4 – 3x^3. So write:
x^4 + 7 = x^4 + 7 + x^3(x – 3) – x^3(x – 3)
= x^4 + 7 + x^3(x – 3) – x^4 + 3x^3
= x^3(x – 3) + 3x^3 + 7
That makes r(x) = 3x^3 + 7. Do the same thing to reduce r(x) by adding/subtracting 3x^2(x – 3) = 3x^3 – 9x^2:
= x^3(x – 3) + 3x^3 + 7 + 3x^2(x – 3) – (3x^3 – 9x^2)
= x^3(x – 3) + 3x^2(x – 3) + 9x^2 + 7
Again to reduce 9x^2 + 7:
= x^3(x – 3) + 3x^2(x – 3) + 9x^2 + 7 + 9x(x – 3) – (9x^2 – 27x)
= x^3(x – 3) + 3x^2(x – 3) + 9x(x – 3) + 27x + 7
And finally write 27x + 7 as 27(x – 3) + 88;
x^4 + 7 = x^3(x – 3) + 3x^2(x – 3) + 9x(x – 3) + 27(x – 3) + 88
Factor out (x – 3) in all but the +88 term:
x^4 + 7 = (x – 3)(x^3 + 3x^2 + 9x + 27) + 88
That means that:
(x^4 + 7) / (x – 3) = x^3 + 3x^2 + 9x + 27 with a remainder of 88

You can either use the process of long division or synthetic division for this problem
Both ways you get the same answer:
x^3 + 3x^2 + 9x + 27
Remainder: 88