Find all solutions in the interval [0, 2π). 7 tan3x – 21 tan x = 0?

NetherCraft 0

2 Answers

  • Is that tan(3x) or tan(x)^3? Do you see these things: ( ). They’re important

    I’ll do both

    7 * tan(3x) – 21 * tan(x) = 0

    tan(3x) – 3 * tan(x) = 0

    tan(2x + x) – 3 * tan(2x – x) = 0

    (tan(2x) + tan(x)) / (1 – tan(2x) * tan(x)) = 3 * (tan(2x) – tan(x)) / (1 + tan(2x) * tan(x))

    (tan(2x) + tan(x)) * (1 + tan(2x) * tan(x)) = 3 * (tan(2x) – tan(x)) * (1 – tan(2x) * tan(x))

    (tan(2x) + tan(x)) * 1 + (tan(2x) + tan(x)) * (tan(2x) * tan(x)) = 3 * (tan(2x) – tan(x)) * 1 – 3 * (tan(2x) – tan(x)) * tan(2x) * tan(x)

    (tan(2x) * tan(x)) * (tan(2x) + tan(x)) + 3 * tan(2x) * tan(x) * (tan(2x) – tan(x)) = 3 * (tan(2x) – tan(x)) – (tan(2x) + tan(x))

    tan(2x) * tan(x) * (tan(2x) + tan(x) + 3 * tan(2x) – 3 * tan(x)) = 3 * tan(2x) – tan(2x) – 3 * tan(x) – tan(x)

    tan(2x) * tan(x) * (4 * tan(2x) – 2 * tan(x)) = 2 * tan(2x) – 4 * tan(x)

    2 * tan(2x) * tan(x) * (2 * tan(2x) – tan(x)) = 2 * (tan(2x) – 2 * tan(x))

    tan(x) * tan(2x) * (2 * tan(2x) – tan(x)) = tan(2x) – 2 * tan(x)

    tan(x) * tan(2x) * (2 * tan(2x) – tan(x)) = (2 * tan(x) / (1 – tan(x)^2)) – 2 * tan(x)

    tan(x) is a common factor on both sides, so tan(x) = 0 is a possible solution set

    tan(2x) * (2 * tan(2x) – tan(x)) = 2 / (1 – tan(x)^2) – 2

    tan(2x) * (2 * tan(2x) – tan(x)) = (2 – 2 + 2 * tan(x)^2) / (1 – tan(x)^2)

    2 * tan(x) * (2 * tan(2x) – tan(x)) / (1 – tan(x)^2) = 2 * tan(x)^2 / (1 – tan(x)^2)

    Again tan(x) = 0 is a possible solution set and we can also rule out 1 – tan(x)^2 = 0 as a solution set. That is, if tan(x) = +/- 1, then it’s not part of the solution set

    2 * (2 * tan(2x) – tan(x)) = 2 * tan(x)

    2 * tan(2x) – tan(x) = tan(x)

    2 * tan(2x) = 2 * tan(x)

    tan(2x) = tan(x)

    2 * tan(x) / (1 – tan(x)^2) = tan(x)

    Again, tan(x) = 0 is a part of our solution set

    2 / (1 – tan(x)^2) = 1

    2 = 1 – tan(x)^2

    tan(x)^2 = -1

    No solution there.

    tan(x) = 0 is the only possible solution

    x = 0 , pi

    If you meant: 7 * tan(x)^3 – 21 * tan(x) = 0

    7 * tan(x) * (tan(x)^2 – 3) = 0

    tan(x) = 0

    x = 0 , pi

    tan(x)^2 – 3 = 0

    tan(x)^2 = 3

    tan(x) = +/- sqrt(3)

    x = pi/3 , 2pi/3 , 4pi/3 , 5pi/3

    x = 0 , pi/3 , 2pi/3 , pi , 4pi/3 , 5pi/3

  • I don`t trust this question !

    I have a sneaking suspicion that it should be shown as :-

    7 tan³x – 21 tan x = 0

    7 tan x [ tan²x – 3 ] = 0

    tan x = 0 , tan x = ± √3

    x = 0 , π , π/3 , 2π/3 , 4π/3 , 5π/3

Also Check This  How does one do an “allusion” in dance?

Leave a Reply

Your email address will not be published. Required fields are marked *