4 Answers
-
We could let u = x, dv = secx tanx dx
du = dx, v = sec x
We get
x*secx – ∫ secx dx
= x*secx – ln|sec x + tan x| + C
-
by parts
∫uv’ dx= uv – ∫vu’ dx
so if
u = x
v’ = secxtanx
u’ = 1
v = secx
∫xsecxtanx dx = xsecx – ∫secx dx
∫secx = ln |secx + tanx| + C
So:
∫xsecxtanx dx = xsecx – ln |secx + tanx| + C
-
dv = secx tanx dx
u = x
du = dx
v= secx
uv – integral v du
x secx – integral secx dx
-
Integrate by parts.
Let u = x, dv = sec x * tan x dx
Then du = dx and v = sec x + C (but you let C = 0 without loss of generality, so v = sec x)
Then int(x * sec x tan x dc)
= int( u dv) = u * v – int(v du)
= x * sec x – int(sec x dx)
= x * sec x – ln |sec(x) + tan(x)| + C
Hope this helps.