Thx
6 Answers
-
cos 2x = cos(x+x) = cos x cos x- sin x sin x = cos^2 x – sin^2 x
(1 + cos 2x)/2 = (1 + cos^2 x – sin^2 x)/2 = (1 + cos^2 x – 1 + cos^2 x)/2 = 2 cos^2 x / 2 = cos^2 x
: )
-
If you want you can start from : sin^2 x + cos^2 x = 1 Divide through by cos^2 x to get: (sin^2 x)/(cos^2 x) + 1 = 1/cos^2 x = tan^2x + 1 = sec^2x The power reduction formula: cos^2 x = (1 + cos 2x)/2, 2cos^2x = 1 + cos 2x Now, your problem: 1 + cos 2x = 2/(1 + tan^2 x) Using the fact that: sec^2x = 1 + tan^2x 1 + cos 2x = 2/(sec^2 x) 2 cos^2 x = 2/(1/cos^2 x) 2cos^2 x = 2cos^2 x Which proves the identity
-
This Site Might Help You.
RE:
How to prove cos^2x=(1+cos2x/2)?
Thx
-
cos 2x
= cos (x + x)
= cosx cosx — sinxsinx
= cos^2x — sin^2x
= cos^2x — (1 — cos^2x)
= 2 cos^2 x — 1
OR 2 cos^2 x = 1 + cos 2x
OR cos^2x = (1 + cos 2x) / 2
-
cos^2(x) – sin^2(x) = cos(2x)
cos^2(x) – (1 – cos^2(x) ) = cos(2x)
2cos^2(x) = cos(2x) + 1 => cos^2(x) = (cos(2x) + 1)/2
-
cos^2(x) + sin^2(x)=1 (identity) implies: sin^2(x)= 1-cos^2(x)…..(1)
cos2x= cos^2(x)-sin^2(x)…….(2)
Replace (1) in (2) implies cos(2x)= cos^2(x) – [1-cos^2(x)]
cos(2x)=2cos^2(x)-1
cos^2(x)=[1+cos(2x)]*(1/2)……..ur answer