(secx/cosx)-secxcosx
simplify this expression to a single term
5 Answers
-
(secx/cosx) – (secx*cosx)
= (secx*secx) – (1/cosx)*cosx
= sec^2x – 1
= tan^2(x)
-
secx-cosx / tanx From trigonometry, secx=1/cosx Substitute: (1/cosx-cosx)/tanx [(1-cos^2x)/cosx]/tanx [sin^2x/cosx]/tanx tanx*secx/tanx secx The answer is secx
-
= (sec x/cos x) – sec x cos x
= ((1/cos x)/cos x) – (1/cos x)*cos x
= 1/cos^2 x – 1
= sec^2 x – 1 by pythagorean identities 1 + tan^2 x = sec^2 x
= 1 + tan^2 x – 1
= tan^2 x
-
=>secx/cosx=sec^2x
=>secxcosx=1
So the above expression can be written as
=>Sec^2-1
=>tan^2(x)
-
sec(x)/cos(x) = sec(x) * 1/cos(x)
sec(x) = 1/cos(x)
1/cos(x) * 1/cos(x) = 1/cos(x)^2
sec(x) * cos(x) = 1/cos(x) * cos(x) = cos(x)/cos(x) = 1 if x%2pi =/= pi/2 or 3pi/2
1/cos^2(x) – 1
sec^2(x) – 1
tan^2(x)